• Research Question: How does becoming disabled change economic and material well-being of households?

- Research Question: How does becoming disabled change economic and material well-being of households?
- Why it is important?
 - As a measure of the safety net for disabled households. How well are we insuring against disability?
 - Understanding the labor market opportunities/outcomes of those with a disability.
 - Considering variation among the disabled population.

- How do they do it?
- Longitudinal data (PSID) with individual effects
- (Measure pre- and post- disability outcomes)

$$y_{it} = \alpha_i + \gamma_t + X_{it}\beta + \sum_g \sum_k \delta^g_k A^g_{kit} + \varepsilon_{it},$$

- What do they find? Lots of things! But lets go through a few:
- Rates of disability decrease from 15% around 1970 to 12.5% recently.
- Among disabled, 17% are chronic severe, 27% are chronic not-severe, 30% are temporary and 25% are one-time.

• Percent with zero hours worked

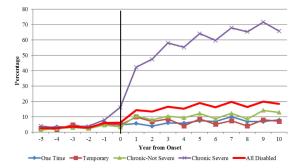


Fig. 2. Percentage of disabled with zero hours of work before and after disability onset, extent of disability groups and all disabled (without controls).

Meyer Mok 2019

60

- Change in annual earnings:
- Note that average drop in income declines from 25% drop to 15% when taxes included, and 10% when transfers included.

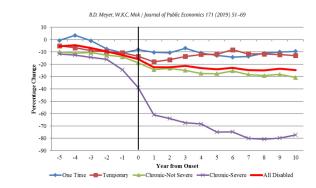


Fig. 3. Percent change in annual earnings before and after disability onset, extent of disability groups and all disabled. Note: The estimates in this figure are from a fixed effects Poisson model.

• Change in Food plus Housing Consumption:

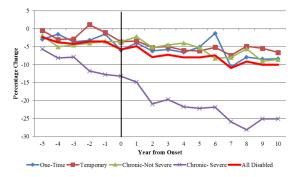


Fig. 9. Percentage change in food plus housing consumption before and after disability onset, extent of disability groups and all disabled. Note: The estimates in this figure are from a fixed effects Poisson model.

- Provide evidence nutrition declines with food consumption drop (not just substitution to cooking more or better shopping)
- Time-use survey evidence finds that the disabled watch more TV (15 hrs/week more), obtain medical care (1.3 hours/wk), sleep more (6.6 hrs/wk), and relax more (2.5 hrs/wk).

- Optimal Disability Benefits Evidence:
- Fit their results into Baily-Chetty model using an 18% drop in consumption.
- Find that optimal DI benefits would be higher than current rate (taking some assumed values of risk aversion and benefit elasticity)

• Question: What is the elasticity of labor force participation w.r.t. DI benefit generosity?

- Question: What is the elasticity of labor force participation w.r.t. DI benefit generosity?
- Use natural experiment in Canada where disability benefits raised in all provinces but Quebec.
- How did LFP respond to this increase in generosity?

• Why is this important?

- Why is this important?
- The more elastic LFP response to DI generosity, the larger the DWL from increasing benefits and lower optimal DI generosity.
- If LFP response is inelastic, can set DI benefits closer to full consumption smoothing.

• How does he measure the LFP elasticity?

- How does he measure the LFP elasticity?
- In Jan 1987, benefits raised by 36 percent in non-Quebec.
- Policy also introduced an early retirement option (so he excludes workers 60 and over)
- Data comes from the Canadian Survey of Consumer Finances, uses 1985-1989 men aged 45-59 (cross-section).

Change in the "flat-rate" or lump-sum portion of Canadian DI benefits:

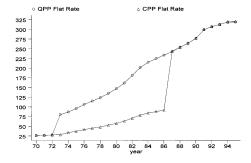


FIG. 1.-Flat-rate portion in Quebec and the rest of Canada

• How does he measure the LFP elasticity?

- How does he measure the LFP elasticity?
- Empirical strategy: Diff-in-diff. Before/After, Quebec/Non-Quebec.
- Controls for other covariates.

Gruber 2000

- Comparison of means:
- We can see the increase in benefits
- Evidence of LFP response.

Means								
	CPP		QI	DIFERENCE				
	Before (1)	After (2)	Before (3)	After (4)	Difference (5)			
Benefits	5,134	7,776	6,878	7,852	1,668 (17)			
Replacement rate	.245	.328	.336	.331	.088 (.003)			
Not em- ployed last week	.200	.217	.256	.246	.027 (.013)			
Married? Any kids <	.856	.856	.817	.841	024			
17? Less than 9 years of	.367	.351	.354	.336	.002			
education 9–10 years of	.303	.274	.454	.421	.004			
education 11–13 years of	.202	.199	.179	.178	002			
education Postsecondary	.246	.254	.169	.187	010			
education Number of observa-	.249	.273	.198	.214	.008			
tions	11,349	18,059	2,134	3,113				

TABLE 1 MEANS

NOTE.-Based on author's tabulations. QPP refers to Quebec; CPP refers to the remainder of Canada. Before is 1985-86; after is 1987-89. Standard deviations are in parentheses.

Public Economics Lectures

Disability Insurance

Gruber 2000

- Running the DID in a logistic regression, the policy led to a 2.3 percent increase in non-employment (11.5% from base value)
- Implied elasticity from the 36% benefit increase: 0.36 (coincidence)

Variable	Estimate		
Married	952		
	(.035)		
Less than 9 years of education	1.291		
	(.041)		
9-10 years of education	.835		
	(.045)		
11-13 years of education	.390		
,	(.046)		
CPP region	173		
	(.058)		
After policy change	005		
. , .	(.068)		
CPP region × after policy change	.150		
	(.075)		
Implied probability effect	.023		
Arc elasticity	.36		

TABLE 2
DIFFERENCE-IN-DIFFERENCE MODEL
(34,655 Observations)

NOTE.— Table presents logistic estimation of eq. (1). Standard errors are in parentheses. Regressions also include a full set of dummies for age and number of children.

- Research Question What is the causal effect of SSDI benefit receipt on employment and earnings?
- This is a primary question of the DI program but tough to estimate. (National program, no RCT or clear, easy eligibility cutoffs or criteria.)

- How do they do it?
- Uses novel approach: variation in examiner leniency.
- Applicants randomly assigned to examiner. Some examiners are more lenient than others.
- Administrative records tracking DI applications and earnings matched with application examiners (2005 and 2006).

Labor force participation relative to initial decision:

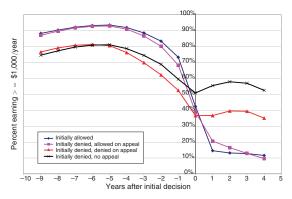


FIGURE 2. EMPLOYMENT BEFORE AND AFTER INITIAL DECISION, 2005 DECISIONS

- Look at similarity between allowed and allowed in appeal.
- Does this indicate that the current marginally denied applicant is in fact disabled?

- Empirical strategy: trying to estimate impact of receiving DI benefits on earnings.
- But we imagine that severity of disability is related to both earnings and DI receipt (also unobserved to econometrician).
- Examiners review application, determine severity and decide whether to accept or reject applicant.

- If examiners systematically vary in their leniency, we can use this as an IV to determine effect of DI on earnings.
- We still can't observe severity directly, but will construct the examiner effect "*EXALLOW*" as the rate of DI acceptances: $\approx \frac{\#Allowed}{\#Cases}$

MMS 2013

How DI receipt and employment vary with our instrument (examiner effects):

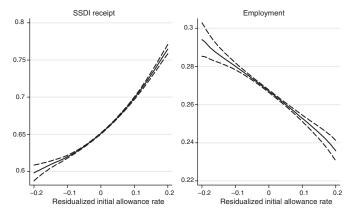


FIGURE 4. SSDI RECEIPT AND LABOR SUPPLY BY INITIAL ALLOWANCE RATE

MMS 2013

Relationship between examiner leniency and allowance rate (severity)

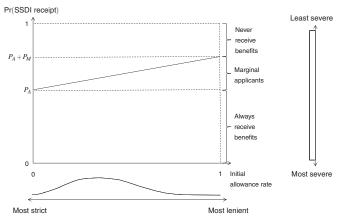


FIGURE 5. MODEL OF EFFECT OF INITIAL ALLOWANCE RATE ON PROBABILITY OF SSDI REPORT

- Can think of splitting into always-taker case, never-taker, and marginal applicant.
- From first-stage, 23 percent of cases are "marginal".
- 57 percent of applicants accepted regardless of examiner, 20 percent are never-takers.

MMS 2013

- Effects on Labor Supply (2-4 years after determination):
- IV estimates 28 percentage point drop in employment 2 years after determination, loss of \$3,800-\$4,600 drop in annual earnings.
- Although note that earnings of denied applicants still one-half to one-quarter of pre-application earnings.

	Two years after decision		Three years after decision		Four years after decision	
Outcome	OLS	IV	OLS	IV	OLS	IV
Panel A. 2005 decisions						
 Earn > = \$1,000/year 						
Mean dependent variable allowed	0.148		0.128		0.106	
Mean dependent variable denied	0.522		0.515		0.471	
Coefficient on ALLOW	-0.347 ***	-0.279 * * *	-0.361 ***	-0.227 ***	-0.345 ***	-0.158^{***}
	(-322.48)	(-8.64)	(-336.60)	(-6.99)	(-321.81)	(-4.83)
R^2	0.200	0.195	0.218	0.200	0.209	0.171
2) Earn $> = SGA$						
Mean dependent variable allowed	0.050		0.043		0.033	
Mean dependent variable denied	0.293		0.302		0.270	
Coefficient on ALLOW	-0.242^{***}	-0.192 * * *	-0.255 ***	-0.166^{***}	-0.233 ***	-0.113***
	(-256.29)	(-7.62)	(-264.05)	(-6.70)	(-252.71)	(-4.59)
R^2	0.149	0.144	0.166	0.152	0.156	0.128
3) Earnings						
Mean dependent variable allowed	1.951		1.737		1.494	
Mean dependent variable denied	8.928		9,191		8,496	
Coefficient on ALLOW	-7.435***	-3.781 ***	-7.715***	-3.007 ***	-7.221***	-1.716
	(-126.50)	(-3.05)	(-182.51)	(-2.92)	(-176.24)	(-1.60)
R^2	0.133	0.117	0.145	0.114	0.125	0.084

TABLE 4-EFFECTS OF SSDI RECEIPT ON EMPLOYMENT AND EARNINGS

• DI effect varies substantially by diagnosis type:

				OLS		IV	
	Observations	Mean employment allowed	Mean employment denied	Coefficient on ALLOW	<i>t</i> -stat	Coefficient on ALLOW	<i>t</i> -stat
Body system code							
Musculoskeletal system	839,847	0.125	0.520	-0.361***	-300.48	-0.173 ***	-3.42
Mental disorders	455,433	0.171	0.535	-0.333***	-210.25	-0.366***	-11.73
Cardiovascular system	185,063	0.116	0.462	-0.328 ***	-134.18	-0.335 ***	-5.81
Neurological	181,162	0.119	0.538	-0.386^{***}	-144.34	-0.359 ***	-7.40
Endocrine system	94,156	0.130	0.467	-0.316^{***}	-100.41	-0.494 **	-2.14
Respiratory system	88,578	0.099	0.462	-0.309 ***	-84.61	-0.061	-0.51
Special/other	85,587	0.132	0.322	-0.222 ***	-57.78	2.000	0.59
Malignant neoplastic diseases	77,021	0.212	0.621	-0.390***	-94.75	-0.347***	-6.18
Immune system disorders	59,188	0.170	0.531	-0.330 ***	-65.02	-0.048	-0.61
Digestive system	53,224	0.158	0.523	-0.353 ***	-80.64	-0.324 ***	-3.08
Special senses and speech	48,396	0.158	0.529	-0.344 ***	-77.59	-0.158	-1.37
Genitourinary impairments	31,837	0.185	0.540	-0.327 * * *	-41.38	-0.084	-0.74
Skin disorders	7,483	0.156	0.560	-0.377 * * *	-32.25	-0.916^{***}	-3.66
Hematological disorders	7,091	0.219	0.590	-0.336***	-26.35	0.116	0.44

TABLE 6— HETEROGENEITY: EFFECTS OF SSDI RECEIPT ON EMPLOYMENT (*two years later*), 2005 and 2006 Combined

- Remember, these estimates only apply to the *marginal* applicants.
- Suggest DI has substantial negative effect on earnings and employment.
- Not really surprising. It also shows large loss of earnings and employment relative to pre-application.
- Only looking at initial application here. Other paper (French and Song) look at variation at the ADJ level.
- Looking at other program participation would be interesting.

- Explaining the rise in disability rolls and the decline in unemployment, 1984-2001.
- Between 1984 and 2001, share of non-elderly adults on DI rose by 60 percent (5.3 million)
- Observe that DI claims rise in recessions, may reduce measured unemployment rate.

DI applications follow the business cycle. Why?

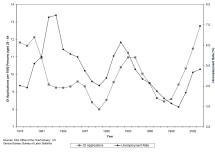


Figure 5: DI Applications and Unemployment Rate

Source: Duggan and Imberman 2005

- Idea: consider a worker laid off in a recession:
 - Given generosity of DI program, instead of claiming UI and searching for job, he applies for DI
 - $\bullet~$ One less unemployed person \Rightarrow unemployment rate lower
- But economic situation is the same: one less person working

- Cite three main reasons for increase to DI rolls:
 - Reduced standards for screening (supply of DI increased)
 - Reduced demand for low-skilled workers (increase in demand for DI)
 - Rise in the Earnings replacement rate (result of benefits formula calculation and increasing income inequality. Also b/c of increasing value of healthcare).

DI replacement rate has been increasing. Most for low-income older workers.

	Earnings	Cash replacen	ncome nent rate	Adding in-kind Medicare benefit			
Age	percentile	1979	1999	1979	1999		
55-61	10	52	74	67	104		
	25	45	54	48	63		
	50	37	47	36	47		
	75	27	32	26	31		
	90	20	24	19	23		
50-54	10	47	57	61	81		
	25	41	47	44	55		
	50	34	41	33	42		
	75	26	32	25	31		
	90	19	23	18	22		
40-49	10	48	53	61	80		
	25	41	45	44	55		
	50	34	41	33	42		
	75	26	33	25	32		
	90	20	26	19	25		
30-39	10	46	54	59	84		
	25	41	46	44	58		
	50	36	41	35	44		
	75	29	36	27	35		
	90	23	28	21	27		

TABLE I POTENTIAL DI INCOME AS A PERCENTAGE OF CURRENT EARNINGS FOR NONELDERLY MALES AT VARIOUS PERCENTILES OF THE WAGE DISTRIBUTION, 1979 AND 1999

DI increases greatest for HS dropouts. Unemployment increase greatest for HS dropouts. Big female increase in DI receipt.

TABLE II

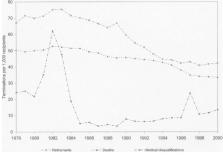
DI I	RECE	IPT /	ND	LABO	or F		: Pai 979.	TICI		ON B		ENDE	r, E	DUC.	ATIO	N, AN	d A	GE
				A	Male								В.	Fema	les	_		
		All		HS	drop	out	Н	S plu	8		All		HS	drop	out	н	S plu	8
Age	79	84	99	79	84	99	79	84	99	79	84	99	79	84	99	79	84	99
A. DI I	Recipi	ents p	er 10	00 no	nelde	rly ad	ults (SSA a	ind St	nrvey	of Inc	ome :	and P	rogra	m Par	ticipa	tion o	lata)
25-39	11	10	15		21	53		5	11	4	4	10		7	21		4	8
40-54	35	28	42		52	105		18	26	15	12	30		35	60		10	21
55-64	113	96	108		148	201		46	59	51	43	72		92	164		29	62
В	. Perc	ent of	none	lderly	, non	partic		s rece Partici				(Sur	vey of	Incor	ne an	d Proj	gram	
25 - 39		17.2	17.0		23.5	26.8		14.1	13.7		1.3	3.2		1.5	3.9		1.1	3.0
40 - 54		36.9	32.7		38.5	40.0		35.6	29.6		4.9	10.0		7.4	11.7		3.3	9.5
55-64		30.2	26.6		42.5	43.2		20.3	20.3		8.7	16.8		14.2	24.4		5.1	13.8
				C. Pe	rcent								bor fo	rce				
						(C)	arrent	Рори	lation	1 Surv	rey da	ita)						
25-39	95.7	94.7	93.1	91.0	88.1	86.1	96.6	95.8	94.1	63.9	70.0	76.3	49.6	50.3	55.0	66.9	73.2	78.7
40-54	92.7	92.7	90.2	86.5	85.0	76.3	95.4	95.0	91.9	60.3	65.7	77.4	48.8	49.8	54.0	64.9	70.6	80.1
5564	73.0	68.6	68.1	64.2	60.2	53.2	79.0	73.3	71.2	41.9	41.8	51.6	33.8	33.3	32.4	47.0	46.0	55.7
		D. P	ercen	t of no	melde	viv a	dulta	unem	nlover	l (Cur	rent	Popul	ation	Surve	w dat	a)		
												,			· · · · ·			

25 - 39	3.7	6.3	3.1	7.0	12.5	6.0	3.0	5.4	2.7	3.9	5.0	3.2	6.2	8.3	6.7	3.4	4.5	2.8
40-54	2.5	4.3	2.4	4.0	7.2	4.5	1.9	3.4	2.2	2.4	3.4	2.1	3.1	4.8	3.8	2.2	2.9	1.9
55-64	1.9	3.4	1.9	2.3	4.7	2.1	1.7	2.6	1.8	1.3	1.8	1.4	1.5	2.4	1.7	1.1	1.4	1.3

Public Economics Lectures

Increase in musculo-skeletal disorders (back pain) and mental disorders since 1983 large. Both have low mortality rates.

	4-Year mortality	Percent of DI awards							
Qualifying impairment	rate (%)	1983	1988	1993	1999				
Neoplasms	81.0	16.8	13.2	12.6	10.6				
Circulatory disorders	19.8	21.9	17.6	14.0	12.1				
Musculo-skeletal disorders	5.3	13.4	16.8	14.8	23.7				
Mental disorders	5.4	16.3	20.9	26.1	22.5				
All others	16.0	31.6	31.5	32.5	31.1				


 TABLE III

 DISTRIBUTION OF QUALIFYING IMPAIRMENTS OF DI AWARDEES AT FIVE-YEAR

 INTERVALS, 1983–1999

Source: Social Security Administration, Annual Statistical Supplement, 1984, 1989, 1994, and 2000. Four-year mortality rate is from administrative follow-up of these awarded benefits in 1985 [Hennessey and Dykacz 1993].

Many fewer DI terminations since 1984 for medical disqualification.

DI Termination Rates per 1000 Beneficiaries by Reason, 1978–2000 Source: Social Security Bulletin: Annual Statistical Supplement [various years]. Termination rates are equal to the fraction of DI beneficiaries terminated by cause annually.

- Two sources of identification:
 - Exploit progressivity of DI benefits formula. Set at a national level, does not adjust for regional wage variation.
 - Identify variation in demand using Bartik Shocks for labor demand.

DI benefit is a progressive, piece-wise function of previous earnings:

(2)

	$AIME_i = rac{1}{T}\sum_{t=1}^T Y_{it} \cdot \max\left[rac{ar{Y}_{T-2}}{ar{Y}_t}, 1 ight],$	$(0.9 \times AIME)$	if	$AIME \in [0, b1]$
(1)	$AIME_i = \overline{T} \sum Y_{ii} \cdot \max[-\overline{v}, 1],$	$PIA = \{0.9 \times b1 + 0.32 \times (AIME - b1)\}$	if	$AIME \in (b1, b2]$
	$I_{t=1}$ $\begin{bmatrix} I_t \end{bmatrix}$	$(0.9 \times b1 + 0.32 \times (b2 - b1) + 0.15 \times (AIME - b2))$	if	AIME > b2,

Note that AIME indexed to change in average, national wages over a 2-year period.

Autor and Duggan 2003: Bartik Shocks

- Standard technique to construct state-level employment shocks over a five year window:
 - Calculate industry shares in a given state in base year
 - Calculate employment changes over five year period by industry using data on national employment (excluding state in question)
 - Project changes in each state's employment using national changes
 - Ex: if car industry declines over a five year period, assign a negative employment shock to Michigan
- Then correlate state employment shocks with DI applications

• Empirics:

• Imagine individual expected LFP as a function of wage, health, individual characteristics and DI benefits "supply" which is a function of both replacement rate and probability of acceptance. (Eq. 6)

• Interested in how a change in supply impacts LFP

- Implement using state-level analog, using first differences in variables (Eq 7).
- For supply changes, start by using change DI recipient rate.
- Then use IV approach use regional wage level variation in "potential" wage replacement.
 - Imagine in Illinois, wages increased by 20% next year but national wages went up 5%. DI only responds to national change. Does IL DI receipts decrease?

- Variation in "supply" of DI benefits
- OLS estimates show changes in DI receipt correlated with changes in LFP, but only among high school dropouts.

	A. Δ Male labor force participation									B. Δ Female labor force participation								
		OLS es	timates			IV est	imates			OLS es	timates		IV estimates					
	High school dropouts		High school grad plus		High school dropouts		High school grad plus		High school dropouts		High school grad plus		High school dropouts		High school grad plus			
	78-84	84-98	78-84	84-98	78-84	84-98	78-84	84-98	78-84	84-98	78-84	84-98	78-84	84-98	78-84	84-98		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Δ DI Rolls/	-0.61	-0.61	-0.06	-0.07	-1.35	-0.51	-0.20	0.07	-0.22	-0.38	0.16	0.00	-1.01	-0.66	0.28	-0.14		
1000 Pop	(0.15)	(0.14)	(0.05)	(0.04)	(0.43)	(0.32)	(0.13)	(0.09)	(0.18)	(0.15)	(0.10)	(0.08)	(0.47)	(0.31)	(0.25)	(0.15)		
Intercept	-1.24	0.25	-0.31	-0.09	-2.03	0.18	-0.47	-0.20	-0.19	0.58	1.13	0.57	-1.04	0.59	1.27	0.65		
	(0.17)	(0.11)	(0.06)	(0.04)	(0.47)	(0.25)	(0.14)	(0.07)	(0.22)	(0.13)	(0.11)	(0.07)	(0.52)	(0.14)	(0.27)	(0.13)		
R^2	0.43	0.59	0.19	0.13					0.08	0.27	0.17	0.02	((0) 817	(0.10)		
1st-stage					-0.77	0.51	-0.86	0.62					-0.87	0.53	-0.75	0.60		
Coefficient $\times 10^{-1}$					(0.24)	(0.16)	(0.24)	(0.14)					(0.25)	(0.14)	(0.25)	(0.12)		

TABLE IV Change in DI Rolls and Labor Force Participation of Nonelderly Adults: OLS and Instrumental Variables Estimates Dependent Variable: 100 × Annualized Change in Labor Force Participation Rate

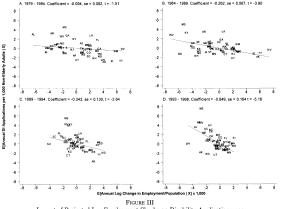
- IV estimates first-stage confirms states with higher potential replacement rates have larger change in DI rolls.
- Second stage confirms OLS findings. Higher potential replacement leads to lower LFP. Only high school dropouts.

	A. Δ Male labor force participation									B. Δ Female labor force participation								
		OLS es	timates			IV est	imates			OLS es	timates		IV estimates					
	High school dropouts		High school grad plus		High school dropouts			High school grad plus		High school dropouts		school plus	High school dropouts		High school grad plus			
	78-84 (1)	84–98 (2)	78–84 (3)	84–98 (4)	78-84 (5)	84–98 (6)	78-84 (7)	84–98 (8)	78-84 (1)	84–98 (2)	78-84 (3)	84–98 (4)	78-84 (5)	84–98 (6)	78-84 (7)	84–98 (8)		
Δ DI Rolls/ 1000 Pop	-0.61 (0.15)	-0.61 (0.14)	-0.06 (0.05)	-0.07 (0.04)	-1.35 (0.43)	-0.51 (0.32)	-0.20 (0.13)	0.07 (0.09)	-0.22 (0.18)	-0.38 (0.15)	0.16 (0.10)	0.00 (0.08)	-1.01 (0.47)	-0.66	0.28	-0.14		
Intercept	-1.24 (0.17)	0.25 (0.11)	-0.31 (0.06)	-0.09 (0.04)	-2.03 (0.47)	0.18 (0.25)	-0.47 (0.14)	-0.20 (0.07)	-0.19 (0.22)	0.58 (0.13)	1.13 (0.11)	0.57 (0.07)	-1.04 (0.52)	0.59 (0.14)	1.27 (0.27)	0.65 (0.13)		
R^2 1st-stage Coefficient $\times 10^{-1}$	0.43	0.59	0.19	0.13	-0.77 (0.24)	0.51 (0.16)	-0.86 (0.24)	0.62 (0.14)	0.08	0.27	0.17	0.02	-0.87 (0.25)	0.53 (0.14)	-0.75 (0.25)	0.60 (0.12)		

TABLE IV Change in DI Rolls and Labor Force Participation of Nonellebelly Adults: OLS and Instrumental Variables Estimates Dependent Variable: 100 × Annualee O Change in Labor Porce Participation Rate

- Now the Bartik Shock for variation in labor market conditions.
- In OLS, states with larger drop in employment have larger DI rolls.

A. OLS	reduced-fo			of predicted	B. IV Estimates: impact of high school dropout $\Delta(Emp/Pop)$, instrumented by predicted $\Delta(Emp/Pop)$, on DI Apps/Pop							
I	ong change	98	Stacked 3-yr diffs			I	long change	:8	Stacked 3-yr diffs			
(1) 78–84	(2) 78–98	(3) 78–98	(4) 78–84	(5) 78–98	(6) 78–98	(1) 78–84	(2) 78–98	(3) 78–98	(4) 78–84	(5) 78–98	(6) 78–98	
-0.13 (0.06)	-0.13 (0.07)	-0.11 (0.05)	-0.12 (0.04)	-0.11 (0.04)	0.00	-0.25 (0.20)	-0.30 (0.22)	-0.05 (0.13)	-0.14 (0.07)	-0.12 (0.07)	0.01	
	-0.34 (0.09)	-0.26 (0.06)		-0.17 (0.05)	-0.05 (0.02)		-0.68 (0.67)	-0.34 (0.23)		-0.15 (0.11)	-0.05 (0.03)	
No 0.29	No 0.32	Yes 0.97	No 0.31	No 0.35	Yes 0.90	No	No	Yes	No	No	Yes	
						0.51 (0.25)	0.52 (0.29)	1.07 (0.69)	0.85 (0.24)	0.90 (0.26)	1.26 (0.33)	
							(0.28)	(1.27)		(0.30)	1.62 (0.42)	
50	100	100	100	950	050	0.05	0.00	0.31	0.00	0.00	11.41 0.00 350	
	(1) 78-84 -0.13 (0.06) No	Long change (1) (2) 78-84 78-98 -0.13 -0.13 (0.06) (0.07) -0.34 (0.07) 0.23 0.32	$\begin{tabular}{ c c c c c } \hline Pep \ on \ D \\ \hline $Log changes$ \\ \hline $Log changes$ \\ \hline 1 & (2) & (3) \\ \hline $78-4$ & $78-9$ & $78-98$ \\ \hline $78-9$ & $78-9$ & $78-98$ \\ \hline -0.13 & -0.13 & -0.11 \\ \hline (0.06) & (0.07) & (0.06) \\ \hline (0.09) & (0.06) \\ \hline No & No & Yee \\ \hline 0.29 & 0.32 & 0.37 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline $Pop) & n DI Adds/Pop. \\ \hline $Long changes$ $Statistical conditions of the large statistical conditions of $	Image: Pop) on DI Adda/Pop Long changes Stacked 3-yr d (1) (2) (3) (4) (5) 78-84 78-98 78-98 78-98 78-98 78-98 -0.13 -0.13 -0.11 -0.12 -0.11 (0.06) -0.077 (0.05) (0.04) -0.04 0.099 (0.06) (0.05) (0.05) 0.05 0.29 0.32 0.97 0.31 0.35	$\begin{tabular}{ c c c c c } \hline $Pop) & n DI Adds/Pop \\ \hline $Long changes$ Stacked 3-yr diffs \\ \hline $I1$ (2) (3) (4) (5) (6) \\ \hline $78-44$ 78-98$ 78-98 78-89 78-98 78-98 \\ \hline -0.13 -0.13$ -0.11 -0.12 -0.11 0.00 \\ \hline (0.06) -0.34$ -0.26 \\ \hline (0.07) (0.05)$ (0.04) (0.04) (0.02) \\ \hline (0.09) (0.06)$ (0.05) (0.05) (0.02) \\ \hline (0.09) (0.06) \\ \hline 0.32 0.97 0.31 0.35 0.99 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c } \hline Pop on DI Adds/Pop & instrumented by \\ \hline $Long changes$ Stacked 3-yr diffs & instrumented by \\ \hline $Long changes$ No set $1000000000000000000000000000000000000$	$\begin{tabular}{ c c c c c c c } \hline Pop on DI Adds/Pop & instrumented by predicted. \\ \hline $Long changes$ Stacked 3-yr diffs & instrumented by aredicted. \\ \hline $Long changes$ & Stacked 3-yr diffs & instrumented by aredicted. \\ \hline $Long changes$ & instrumented by aredicted.$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	


TABLE V IMPACT OF EMPLOYMENT LOSSES ON DI APPLICATIONS FLOWS 1978–1996: REDUCED-FORM AND INSTRUMENTAL VARIABLES ESTIMATES DEPENDENT VARIABLE: ANNUALZED FLOW OF DISABILITY APPLICANTS PER NONELDERLY ADULT

- With Bartik IV, states with larger employment loss have higher DI applications.
- (this is also confirmed using within-state Bartik variation in robustness).

	A. OLS	5 reduced-fo		es: impact o I Adds/Pop	f predicted	B. IV Estimates: impact of high school dropout $\Delta(Emp/Pop)$, instrumented by predicted $\Delta(Emp/Pop)$, on DI Apps/Pop							
	1	Long change	es	Stacked 3-yr diffs			1	long change	98	Stacked 3-yr diffs			
	(1) 78–84	(2) 78–98	(3) 78–98	(4) 78–84	(5) 78–98	(6) 78–98	(1) 78–84	(2) 78–98	(3) 78–98	(4) 78–84	(5) 78–98	(6) 78–98	
Δ Emp/Pop	-0.13 (0.06)	-0.13 (0.07)	-0.11 (0.05)	-0.12 (0.04)	-0.11 (0.04)	0.00	-0.25 (0.20)	-0.30	-0.05 (0.13)	-0.14 (0.07)	-0.12 (0.07)	0.01	
Δ Emp/Pop × Post-1984		-0.34 (0.09)	-0.26 (0.06)		-0.17 (0.05)	-0.05 (0.02)		-0.68 (0.67)	-0.34 (0.23)		-0.15 (0.11)	-0.05 (0.03	
State dummies R ²	No 0.29	No 0.32	Yes 0.97	No 0.31	No 0.35	Yes 0.90	No	No	Yes	No	No	Yes	
1st-stage coef. (main effect) 1-stage coef.							0.51 (0.25)	0.52 (0.29) 0.54	1.07 (0.69) 1.69	0.85 (0.24)	0.90 (0.26) 1.01	1.26 (0.33) 1.62	
(interaction) F-statistic P-value							3.97 0.05	(0.28) 7.87 0.00	(1.27) 1.19 0.31	12.02 0.00	(0.30) 17.26 0.00	(0.42) 11.41 0.00	
n	50	100	100	100	350	350	50	100	100	100	350	350	

TABLE V Impact of Employment Losses on DI Applications Flows 1978–1998: Reduced-Form and Instrumental Variables Estimates Dependent Variable: Annialized Flow of Disability Applicants per Novelderly Applic

You can see the relationship growing stronger over time:

Impact of Projected Log Employment Shocks on Disability Applications per 1000 Nonelderly Adults at Five-Year Intervals, 1979–1998

- Makes a good prediction that DI will rise another 40 percent over the next decade.
- Rules out other explanations: declining health, rising immigration and incarceration, unemployment benefits.

- Conclusions:
 - Finds that after 1984 liberalization, DI applications became 2-3 times more responsive to labor market shocks.
 - Unemployment rate would have been half a point higher in 1998 if not for 1984 liberalization.